ON THE COMPLEXITY OF OPTIMAL GRAMMAR-BASED COMPRESSION

> BY JAN ARPE AND RUDIGER REISCHUK

SCHRIFTENREIHE DER INSTITUTE FUR INFORMATIK/MATHEMATIK

JASON LUSTIG

GRAMMAR-BASED COMPRESSION: WHAT??

Encoding: Create a context-free grammar for a string of characters or bits

Code the grammar and transfer it

Decoding: Parse and expand the grammar

A SHORT EXAMPLE

X = "DOG EAT DOG"

 $T1 \rightarrow D$ $T2 \rightarrow O$ $T3 \rightarrow G$ $T4 \rightarrow [SPACE]$ $T5 \rightarrow E$ $T6 \rightarrow A$ $T7 \rightarrow T$

 $V1 \rightarrow T1T2T3$ $V2 \rightarrow T5T6T7$ $S \rightarrow V1T4V2T4V1$

RELATIONSHIP TO SLIDING WINDOW AND OTHER METHODS

Sliding window methods can be seen as a specific case and coding of grammar-based compression

- % You are doing text-replacement... isn't it the same thing?
- Sort of like the arithmetic coding of grammars - you can start decompressing before the whole input shows up

GOALS OF GRAMMAR-BASED COMPRESSION

It must be deterministic -- i.e. you can only get one expansion from a grammar

It should be as small as possible

THIS IS THE HARD PART

- * Fairly certain that finding the Minimum Grammar Compression (MGC) is quite hard
- It is NP-complete, in fact, when restricted to alphabets of size >= 3
- # However, they are not sure if it is NP-hard in binary encodings (We call this 2MGC)

SO WHAT DO WE DO?

* Try to *approximate* the minimum grammar

Smallest grammars known so far are of size at most O(log n), but not sure this is the best possible

WHAT IS NEW HERE?

- * Authors try to show relationship between grammars on strings with a library of arbitrary size and those with a finite size
- By making a block coding from a string in one arbitrary alphabet to a finite one, they show how the size of a grammar for the coding size is related to that of the original string
- This reduces case of arbitrary alphabets to finite ones

IT'S ALL GREEK TO ME

- **T**: Finite or infinite alphabet
- Σ : Finite alphabet
- $\varphi : Block coding, \varphi(x \mid x \in \tau^*) = x \longrightarrow \Sigma^*$
- $G_x : Grammars for x. \{\Sigma, V = nonterminals, P = derivations, S = start symbols\}$

 $m(G_x)$: size of the grammar

 $m^*(G_x)$: size of smallest grammar

CODING GRAMMAR AND STRING GRAMMAR

- Let $x \in T^*$, ϕ : l-block code, T^* to Σ^*
- * Grammar for x has size m(x), grammar for $\phi(\tau_x)$ has size $m(\phi)$
- Stammar for $\varphi(x)$ has size $m(\varphi(x)) <= m$ (x)+m(φ)

AN EXAMPLE

```
T = \{0, 1, 2, 3, 4, 5, 6, 7\}; |T| = 8
\Sigma = \{0, 1\}; |\Sigma| = 2
\varphi: \tau_x^* \to \Sigma^*:
  0 \rightarrow 000 \quad 4 \rightarrow 100
  1 \rightarrow 001 \qquad 5 \rightarrow 101
  2 \rightarrow 010 \quad 6 \rightarrow 110
  3 \rightarrow 011 \qquad 7 \rightarrow 111
\boldsymbol{\varphi} is an l-block coding where l=3
x \in \tau^*, \phi(x) \in \Sigma^*
x = 254761225
```


Terminals	Nonterminals	Start
$T_{2} \rightarrow 2$ $T_{5} \rightarrow 5$ $T_{4} \rightarrow 4$ $T_{7} \rightarrow 7$ $T_{6} \rightarrow 6$ $T_{1} \rightarrow 1$	$NT_{0} \rightarrow T_{2}T_{5}$ $NT_{1} \rightarrow T_{4}T_{7}$ $NT_{2} \rightarrow T_{6}T_{1}$ $NT_{3} \rightarrow T_{2}T_{2}$ $NT_{4} \rightarrow NT_{0}NT_{1}$ $NT_{5} \rightarrow NT_{2}NT_{3}$ $NT_{6} \rightarrow NT_{4}NT_{5}$	S _x → NT ₆ NT ₄

m(x) = |Terminals| + |Nonterminals| + |Start| = 14

Gφ

Terminals	Nonterminals	Start
$T_{2} \rightarrow 010$ $T_{5} \rightarrow 101$ $T_{4} \rightarrow 100$ $T_{7} \rightarrow 111$ $T_{6} \rightarrow 110$ $T_{1} \rightarrow 001$		$S_{2} \rightarrow T_{2}$ $S_{5} \rightarrow T_{5}$ $S_{4} \rightarrow T_{4}$ $S_{7} \rightarrow T_{7}$ $S_{6} \rightarrow T_{6}$ $S_{1} \rightarrow T_{1}$

 $m(\mathbf{\phi}) = |Terminals| + |Nonterminals| + |Start| = 12$

WHAT WE CAN DO

* Make a grammar for $\varphi(x)$, of size $m(\varphi(x))$

 $m(\varphi(x)) \leq m(x) + m(\varphi)$

 From G_{φ(x)} authors construct another grammar for x, m(x) ≤ 2*l*m(φ(x))

If ϕ is overlap-free, m(x) <= 2*m(ϕ (x))

% They also show that this holds for m $^{*}(x)$

MORE ON BINARY ALPHABETS

* Authors are interested in binary because it is the most practical

 Take an l-block code φ : τ_x^* → {0, 1}*

 $m^{*}(x) >= 1/24 * l * m^{*}(\phi(x))$

In other words:

 $m^{*}(\phi(x)) \le 24/1 * |\tau|$

BOUNDED V. UNBOUNDED

- [∞] For all ε > 0, there is a natural *n* such that if $|x| \ge n$, then for any G_x of size m(x), we can make a grammar for $\varphi(x)$ of size m(φ (x)) ≤ (12 + ε)m(x)
- ^{**} Authors can then take this and make another G_x of size m(x) ≤ 2m(φ(x))
- This shows us that the size of grammars for bounded v. unbounded alphabets only differs by constant factors

- * This implies that if MGC cannot be done within constant factors for arbitrary strings, it can't be done for binary either
- Also, they showed that for unbounded and finite alphabets the grammars are related by constants
- * Needs additional research find optimal grammar-based compression for a set of strings

