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Grammar-Based 
Compression: What??

Encoding: Create a context-free grammar 
for a string of characters or bits

Code the grammar and transfer it

Decoding: Parse and expand the grammar



A short example

X = “DOG EAT DOG”

T1 → D
T2 → O
T3 →G
T4 → [SPACE]
T5 →E
T6 →A
T7 →T

V1 → T1T2T3
V2 → T5T6T7
S → V1T4V2T4V1



Relationship to 
sliding window and 

other methods
Sliding window methods can be seen as a 
specific case and coding of grammar-based 
compression

You are doing text-replacement... isn’t it the 
same thing?

Sort of like the arithmetic coding of 
grammars - you can start decompressing 
before the whole input shows up



Goals of grammar-
based compression

It must be deterministic -- i.e. you can only 
get one expansion from a grammar 

It should be as small as possible



This is the hard part

Fairly certain that finding the Minimum 
Grammar Compression (MGC) is quite hard

It is NP-complete, in fact, when restricted 
to alphabets of size >= 3

However, they are not sure if it is NP-hard 
in binary encodings (We call this 2MGC)



So what do we do?

Try to approximate the minimum grammar

Smallest grammars known so far are of size 
at most O(log n), but not sure this is the 
best possible



What is new here?

Authors try to show relationship between 
grammars on strings with a library of 
arbitrary size and those with a finite size

By making a block coding from a string in 
one arbitrary alphabet to a finite one, they 
show how the size of a grammar for the 
coding size is related to that of the original 
string

This reduces case of arbitrary alphabets to 
finite ones



It’s all greek to me

τ : Finite or infinite alphabet

Σ : Finite alphabet

φ : Block coding, φ(x | x ∈ τ*) = x --> Σ*

Gx : Grammars for x. {Σ, V = nonterminals, 
P = derivations, S = start symbols}

m(Gx) : size of the grammar

m*(Gx) : size of smallest grammar



Coding grammar and 
string grammar

Let x ∈ τ*, φ : l-block code, τ*to Σ*

Grammar for x has size m(x), grammar for 
φ(τx) has size m(φ)

Grammar for φ(x) has size m(φ(x)) <= m
(x)+m(φ)



An example

τ = {0, 1, 2, 3, 4, 5, 6, 7}; |τ| = 8
Σ = {0, 1}; |Σ| = 2
φ : τx* ➝ Σ* :

0 ➝ 000       4 ➝ 100
1 ➝ 001       5 ➝ 101
2 ➝ 010       6 ➝ 110
3 ➝ 011       7 ➝ 111

φ is an l-block coding where l=3
x ∈ τ*, φ(x) ∈ Σ*
x       = “2     5     4      7     6     1     2     2     2     5”
φ(x) = “010 110 100 111 110 001 010 010 010 110”



Gx

Terminals Nonterminals Start

T2 ➝ 2
T5 ➝ 5
T4 ➝ 4
T7 ➝ 7
T6 ➝ 6
T1 ➝ 1

NT0 ➝ T2T5

NT1 ➝ T4T7

NT2 ➝ T6T1

NT3 ➝ T2T2

NT4 ➝ NT0NT1

NT5 ➝ NT2NT3

NT6 ➝ NT4NT5

Sx ➝ NT6NT4

m(x) = |Terminals| + |Nonterminals| + |Start| = 14



Gφ
Terminals Nonterminals Start

T2 ➝ 010
T5 ➝ 101
T4 ➝ 100
T7 ➝ 111
T6 ➝ 110
T1 ➝ 001

S2 ➝ T2

S5 ➝ T5

S4 ➝ T4

S7 ➝ T7

S6 ➝ T6

S1 ➝ T1

m(φ) = |Terminals| + |Nonterminals| + |Start| = 12



What we can do

Make a grammar for φ(x), of size  m(φ(x))

m(φ(x)) ≤ m(x) + m(φ)

From Gφ(x) authors construct another 
grammar for x, m(x) ≤ 2*l*m(φ(x))

If φ is overlap-free, m(x) <= 2*m(φ(x))

They also show that this holds for m*(x)



More on binary 
alphabets

Authors are interested in binary because it 
is the most practical

Take an l-block code φ : τx* ➝ {0, 1}*

m*(x)  >= 1/24 * l * m*(φ(x))

In other words:

m*(φ(x)) ≤ 24/l * |τ|



Bounded v. 
Unbounded

For all ε> 0, there is a natural n such that if 
|x| >= n, then for any Gx of size m(x), we 
can make a grammar for φ(x) of size m(φ
(x)) ≤ (12 + ε)m(x)

Authors can then take this and make 
another Gx of size m(x) ≤ 2m(φ(x))

This shows us that the size of grammars for 
bounded v. unbounded alphabets only 
differs by constant factors



So what?

This implies that if MGC cannot be done 
within constant factors for arbitrary strings, 
it can’t be done for binary either

Also, they showed that for unbounded and 
finite alphabets the grammars are related by 
constants

Needs additional research - find optimal 
grammar-based compression for a set of 
strings



?


