
On the Complexity
of Optimal

Grammar-Based
Compression
B y J a n A r p e a n d

R u d i g e r R e i s c h u k

S c h r i f t e n r e i h e d e r
I n s t i t u t e f u r

I n f o r m a t i k / M a t h e m a t i k

J a s o n L u s t i g

Grammar-Based
Compression: What??

Encoding: Create a context-free grammar
for a string of characters or bits

Code the grammar and transfer it

Decoding: Parse and expand the grammar

A short example

X = “DOG EAT DOG”

T1 → D
T2 → O
T3 →G
T4 → [SPACE]
T5 →E
T6 →A
T7 →T

V1 → T1T2T3
V2 → T5T6T7
S → V1T4V2T4V1

Relationship to
sliding window and

other methods
Sliding window methods can be seen as a
specific case and coding of grammar-based
compression

You are doing text-replacement... isn’t it the
same thing?

Sort of like the arithmetic coding of
grammars - you can start decompressing
before the whole input shows up

Goals of grammar-
based compression

It must be deterministic -- i.e. you can only
get one expansion from a grammar

It should be as small as possible

This is the hard part

Fairly certain that finding the Minimum
Grammar Compression (MGC) is quite hard

It is NP-complete, in fact, when restricted
to alphabets of size >= 3

However, they are not sure if it is NP-hard
in binary encodings (We call this 2MGC)

So what do we do?

Try to approximate the minimum grammar

Smallest grammars known so far are of size
at most O(log n), but not sure this is the
best possible

What is new here?

Authors try to show relationship between
grammars on strings with a library of
arbitrary size and those with a finite size

By making a block coding from a string in
one arbitrary alphabet to a finite one, they
show how the size of a grammar for the
coding size is related to that of the original
string

This reduces case of arbitrary alphabets to
finite ones

It’s all greek to me

τ : Finite or infinite alphabet

Σ : Finite alphabet

φ : Block coding, φ(x | x ∈ τ*) = x --> Σ*

Gx : Grammars for x. {Σ, V = nonterminals,
P = derivations, S = start symbols}

m(Gx) : size of the grammar

m*(Gx) : size of smallest grammar

Coding grammar and
string grammar

Let x ∈ τ*, φ : l-block code, τ*to Σ*

Grammar for x has size m(x), grammar for
φ(τx) has size m(φ)

Grammar for φ(x) has size m(φ(x)) <= m
(x)+m(φ)

An example

τ = {0, 1, 2, 3, 4, 5, 6, 7}; |τ| = 8
Σ = {0, 1}; |Σ| = 2
φ : τx* ➝ Σ* :

0 ➝ 000 4 ➝ 100
1 ➝ 001 5 ➝ 101
2 ➝ 010 6 ➝ 110
3 ➝ 011 7 ➝ 111

φ is an l-block coding where l=3
x ∈ τ*, φ(x) ∈ Σ*
x = “2 5 4 7 6 1 2 2 2 5”
φ(x) = “010 110 100 111 110 001 010 010 010 110”

Gx

Terminals Nonterminals Start

T2 ➝ 2
T5 ➝ 5
T4 ➝ 4
T7 ➝ 7
T6 ➝ 6
T1 ➝ 1

NT0 ➝ T2T5

NT1 ➝ T4T7

NT2 ➝ T6T1

NT3 ➝ T2T2

NT4 ➝ NT0NT1

NT5 ➝ NT2NT3

NT6 ➝ NT4NT5

Sx ➝ NT6NT4

m(x) = |Terminals| + |Nonterminals| + |Start| = 14

Gφ
Terminals Nonterminals Start

T2 ➝ 010
T5 ➝ 101
T4 ➝ 100
T7 ➝ 111
T6 ➝ 110
T1 ➝ 001

S2 ➝ T2

S5 ➝ T5

S4 ➝ T4

S7 ➝ T7

S6 ➝ T6

S1 ➝ T1

m(φ) = |Terminals| + |Nonterminals| + |Start| = 12

What we can do

Make a grammar for φ(x), of size m(φ(x))

m(φ(x)) ≤ m(x) + m(φ)

From Gφ(x) authors construct another
grammar for x, m(x) ≤ 2*l*m(φ(x))

If φ is overlap-free, m(x) <= 2*m(φ(x))

They also show that this holds for m*(x)

More on binary
alphabets

Authors are interested in binary because it
is the most practical

Take an l-block code φ : τx* ➝ {0, 1}*

m*(x) >= 1/24 * l * m*(φ(x))

In other words:

m*(φ(x)) ≤ 24/l * |τ|

Bounded v.
Unbounded

For all ε> 0, there is a natural n such that if
|x| >= n, then for any Gx of size m(x), we
can make a grammar for φ(x) of size m(φ
(x)) ≤ (12 + ε)m(x)

Authors can then take this and make
another Gx of size m(x) ≤ 2m(φ(x))

This shows us that the size of grammars for
bounded v. unbounded alphabets only
differs by constant factors

So what?

This implies that if MGC cannot be done
within constant factors for arbitrary strings,
it can’t be done for binary either

Also, they showed that for unbounded and
finite alphabets the grammars are related by
constants

Needs additional research - find optimal
grammar-based compression for a set of
strings

?

