ON THE COMPLEXITY

OF OPTIMAL

GRAMMAR-BASED

COMPRESSION
BY JAN APE AND R U DI GER REMS CH UK

SCHRIFTENREIHE DER INSTITUTE FUR
I NFORMATIK/MATHEMATIK
JASON LUSTY

GRAMMAR－BASED COMPRESSION：WHAT？？

諩 Encoding：Create a context－free grammar for a string of characters or bits

数 Code the grammar and transfer it
政 Decoding：Parse and expand the grammar

A SHORT EXAMPLE

$$
\begin{array}{ll}
\mathrm{X}=\text { "DOG EAT DOG" } & \\
\mathrm{T} 1 \rightarrow \mathrm{D} & \\
\mathrm{~T} 2 \rightarrow \mathrm{O} & \mathrm{~V} 1 \rightarrow \mathrm{~T} 1 \mathrm{~T} 2 \mathrm{~T} 3 \\
\text { T3 } \rightarrow \mathrm{G} & \text { V2 } \rightarrow \text { T5T6T7 } \\
\mathrm{T} 4 \rightarrow[\text { SPACE }] & \mathrm{S} \rightarrow \text { V1T4V2T4V1 } \\
\text { T5 } \rightarrow \mathrm{E} & \\
\text { T6 } & \\
\mathrm{T} 7 \rightarrow \mathrm{~A} &
\end{array}
$$

RELATIONSHIP TO SLIDING WINDOW AND OTHER METHODS

疄 Sliding window methods can be seen as a specific case and coding of grammar－based compression

第 You are doing text－replacement．．．isn＇t it the same thing？

笽 Sort of like the arithmetic coding of grammars－you can start decompressing before the whole input shows up

GOALS OF GRAMMARBASED COMPRESSION

蛽 It must be deterministic -- i.e. you can only get one expansion from a grammar

櫡 It should be as small as possible

THIS IS THE HARD PART

笨 Fairly certain that finding the Minimum Grammar Compression（MGC）is quite hard

俨 It is NP－complete，in fact，when restricted to alphabets of size $>=3$

蝶 However，they are not sure if it is NP－hard in binary encodings（We call this 2MGC）

SO WHAT DO WE DO?

Try to approximate the minimum grammar
橉 Smallest grammars known so far are of size at most $O(\log n)$, but not sure this is the best possible

WHAT IS NEW HERE？

㗪 Authors try to show relationship between grammars on strings with a library of arbitrary size and those with a finite size

颣 By making a block coding from a string in one arbitrary alphabet to a finite one，they show how the size of a grammar for the coding size is related to that of the original string

暽 This reduces case of arbitrary alphabets to finite ones

IT＇S ALL GREEK TO ME

粼 T ：Finite or infinite alphabet
櫡 Σ ：Finite alphabet
䗱 φ ：Block coding，$\varphi\left(\mathrm{x} \mid \mathrm{x} \in \mathrm{T}^{*}\right)=\mathrm{x} \rightarrow \Sigma^{*}$
颣 G_{x} ：Grammars for $\mathrm{x} .\{\Sigma, V=$ nonterminals， $\mathrm{P}=$ derivations， $\mathrm{S}=$ start symbols $\}$

䗲 $m\left(G_{x}\right)$ ：size of the grammar
溸 $\mathrm{m}^{*}\left(\mathrm{G}_{\mathrm{x}}\right)$ ：size of smallest grammar

CODING GRAMMAR AND STRING GRAMMAR

䋤 Let $\mathrm{x} \in \mathrm{T}^{*}, \varphi:$ l－block code， T^{*} to Σ^{*}
橉 Grammar for x has size $\mathrm{m}(\mathrm{x})$ ，grammar for $\varphi\left(\mathrm{T}_{\mathrm{x}}\right)$ has size $\mathrm{m}(\varphi)$

櫡 Grammar for $\varphi(x)$ has size $m(\varphi(x))<=m$ $(\mathrm{x})+\mathrm{m}(\varphi)$

AN EXAMPLE

```
\(\mathbf{T}=\{0,1,2,3,4,5,6,7\} ;|\boldsymbol{T}|=8\)
\(\Sigma=\{0,1\} ;|\Sigma|=2\)
\(\varphi: \mathrm{T}_{\mathrm{x}}{ }^{*} \rightarrow \Sigma^{*}\) :
    \(0 \rightarrow 000 \quad 4 \rightarrow 100\)
    \(1 \rightarrow 001 \quad 5 \rightarrow 101\)
    \(2 \rightarrow 010 \quad 6 \rightarrow 110\)
    \(3 \rightarrow 011 \quad 7 \rightarrow 111\)
```

φ is an l-block coding where $\mathrm{l}=3$
$\begin{array}{lllllllll}\mathrm{x} \in \mathrm{T}^{*}, \varphi(\mathrm{x}) & \in \sum^{*} \\ \mathrm{x} & = & 5 & 4 & 7 & 6 & 1 & 2 & 2\end{array} 2$
$\varphi(x)=$ "010 110100111110001010010010 110"

G_{x}

Terminals	Nonterminals	Start
$\mathrm{T}_{2} \rightarrow 2$	$\mathrm{NT}_{0} \rightarrow \mathrm{~T}_{2} \mathrm{~T}_{5}$	$\mathrm{~S}_{\mathbf{x}} \rightarrow \mathrm{NT}_{6} \mathrm{NT}_{4}$
$\mathrm{~T}_{5} \rightarrow 5$	$\mathrm{NT}_{1} \rightarrow \mathrm{~T}_{4} \mathrm{~T}_{7}$	
$\mathrm{~T}_{4} \rightarrow 4$	$\mathrm{NT}_{2} \rightarrow \mathrm{~T}_{6} \mathrm{~T}_{1}$	
$\mathrm{~T}_{7} \rightarrow 7$	$\mathrm{NT}_{3} \rightarrow \mathrm{~T}_{2} \mathrm{~T}_{2}$	
$\mathrm{~T}_{6} \rightarrow 6$	$\mathrm{NT}_{4} \rightarrow \mathrm{NT}_{0} \mathrm{NT}_{1}$	
$\mathrm{~T}_{1} \rightarrow 1$	$\mathrm{NT}_{5} \rightarrow \mathrm{NT}_{2} \mathrm{NT}_{3}$	
	$\mathrm{NT}_{6} \rightarrow \mathrm{NT}_{4} \mathrm{NT}_{5}$	

$\mathrm{m}(\mathrm{x})=\mid$ Terminals $|+|$ Nonterminals $|+|$ Start $\mid=14$

G_{φ}

Terminals	Nonterminals	Start
$\mathrm{T}_{2} \rightarrow 010$		$\mathrm{~S}_{2} \rightarrow \mathrm{~T}_{2}$
$\mathrm{~T}_{5} \rightarrow 101$		$\mathrm{~S}_{5} \rightarrow \mathrm{~T}_{5}$
$\mathrm{~T}_{4} \rightarrow 100$		$\mathrm{~S}_{4} \rightarrow \mathrm{~T}_{4}$
$\mathrm{~T}_{7} \rightarrow 111$		$\mathrm{~S}_{7} \rightarrow \mathrm{~T}_{7}$
$\mathrm{~T}_{6} \rightarrow 110$		$\mathrm{~S}_{6} \rightarrow \mathrm{~T}_{6}$
$\mathrm{~T}_{1} \rightarrow 001$		$\mathrm{~S}_{1} \rightarrow \mathrm{~T}_{1}$

$\mathrm{m}(\varphi)=\mid$ Terminals $|+|$ Nonterminals $|+|$ Start $\mid=12$

WHAT WE CAN DO

羛 Make a grammar for $\varphi(x)$ ，of size $m(\varphi(x))$
解 $\mathrm{m}(\varphi(\mathrm{x})) \leq \mathrm{m}(\mathrm{x})+\mathrm{m}(\varphi)$
蝶 From $\mathrm{G}_{\varphi(\mathrm{x})}$ authors construct another grammar for $\mathrm{x}, \mathrm{m}(\mathrm{x}) \leq 2^{*} \mathrm{l}^{*} \mathrm{~m}(\varphi(\mathrm{x}))$

蝪 If φ is overlap－free，$m(x)<=2 * m(\varphi(x))$
静 They also show that this holds for $\mathrm{m}^{*}(\mathrm{x})$

MORE ON BINARY ALPHABETS

蝺 Authors are interested in binary because it is the most practical

数 Take an l－block code $\varphi: \mathbf{T}_{\mathrm{x}}{ }^{*} \rightarrow\{0,1\}^{*}$
彞 $\mathrm{m}^{*}(\mathrm{x})>=1 / 24^{*} \mathrm{l}^{*} \mathrm{~m} *(\varphi(\mathrm{x}))$
铔 In other words：

$$
\text { 粼 } \mathrm{m}^{*}(\varphi(\mathrm{x})) \leq 24 / l^{*}|\mathrm{~T}|
$$

BOUNDED V． UNBOUNDED

袪 For all $\varepsilon>0$ ，there is a natural n such that if $|x|>=n$ ，then for any G_{x} of size $m(x)$ ，we can make a grammar for $\varphi(x)$ of size $m(\varphi$ $(\mathrm{x})) \leq(12+\varepsilon) \mathrm{m}(\mathrm{x})$

觖 Authors can then take this and make another G_{x} of size $\mathrm{m}(\mathrm{x}) \leq 2 \mathrm{~m}(\varphi(\mathrm{x}))$

渋 This shows us that the size of grammars for bounded v．unbounded alphabets only differs by constant factors

SO WHAT？

彞 This implies that if MGC cannot be done within constant factors for arbitrary strings， it can＇t be done for binary either

䡕Also，they showed that for unbounded and finite alphabets the grammars are related by constants

蝶 Needs additional research－find optimal grammar－based compression for a set of strings

$$
?
$$

